Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Hum Mol Genet ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569558

RESUMO

While many disease-associated single nucleotide polymorphisms (SNPs) are expression quantitative trait loci (eQTLs), a large proportion of genome-wide association study (GWAS) variants are of unknown function. Alternative polyadenylation (APA) plays an important role in posttranscriptional regulation by allowing genes to shorten or extend 3' untranslated regions (UTRs). We hypothesized that genetic variants that affect APA in lung tissue may lend insight into the function of respiratory associated GWAS loci. We generated alternative polyadenylation (apa) QTLs using RNA sequencing and whole genome sequencing on 1241 subjects from the Lung Tissue Research Consortium (LTRC) as part of the NHLBI TOPMed project. We identified 56 179 APA sites corresponding to 13 582 unique genes after filtering out APA sites with low usage. We found that a total of 8831 APA sites were associated with at least one SNP with q-value < 0.05. The genomic distribution of lead APA SNPs indicated that the majority are intronic variants (33%), followed by downstream gene variants (26%), 3' UTR variants (17%), and upstream gene variants (within 1 kb region upstream of transcriptional start site, 10%). APA sites in 193 genes colocalized with GWAS data for at least one phenotype. Genes containing the top APA sites associated with GWAS variants include membrane associated ring-CH-type finger 2 (MARCHF2), nectin cell adhesion molecule 2 (NECTIN2), and butyrophilin subfamily 3 member A2 (BTN3A2). Overall, these findings suggest that APA may be an important mechanism for genetic variants in lung function and chronic obstructive pulmonary disease (COPD).

2.
medRxiv ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38585732

RESUMO

RATIONALE: Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are debilitating diseases associated with divergent histopathological changes in the lungs. At present, due to cost and technical limitations, profiling cell types is not practical in large epidemiology cohorts (n>1000). Here, we used computational deconvolution to identify cell types in COPD and IPF lungs whose abundances and cell type-specific gene expression are associated with disease diagnosis and severity. METHODS: We analyzed lung tissue RNA-seq data from 1026 subjects (COPD, n=465; IPF, n=213; control, n=348) from the Lung Tissue Research Consortium. We performed RNA-seq deconvolution, querying thirty-eight discrete cell-type varieties in the lungs. We tested whether deconvoluted cell-type abundance and cell type-specific gene expression were associated with disease severity. RESULTS: The abundance score of twenty cell types significantly differed between IPF and control lungs. In IPF subjects, eleven and nine cell types were significantly associated with forced vital capacity (FVC) and diffusing capacity for carbon monoxide (DLCO), respectively. Aberrant basaloid cells, a rare cells found in fibrotic lungs, were associated with worse FVC and DLCO in IPF subjects, indicating that this aberrant epithelial population increased with disease severity. Alveolar type 1 and vascular endothelial (VE) capillary A were decreased in COPD lungs compared to controls. An increase in macrophages and classical monocytes was associated with lower DLCO in IPF and COPD subjects. In both diseases, lower non-classical monocytes and VE capillary A cells were associated with increased disease severity. Alveolar type 2 cells and alveolar macrophages had the highest number of genes with cell type-specific differential expression by disease severity in COPD and IPF. In IPF, genes implicated in the pathogenesis of IPF, such as matrix metallopeptidase 7, growth differentiation factor 15, and eph receptor B2, were associated with disease severity in a cell type-specific manner. CONCLUSION: Utilization of RNA-seq deconvolution enabled us to pinpoint cell types present in the lungs that are associated with the severity of COPD and IPF. This knowledge offers valuable insight into the alterations within tissues in more advanced illness, ultimately providing a better understanding of the underlying pathological processes that drive disease progression.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38607551

RESUMO

RATIONALE: The European Respiratory Society (ERS) and the American Thoracic Society (ATS) recommend using z-scores, and the ATS has recommended using Global Lung Initiative (GLI)- "Global" race-neutral reference equations for spirometry interpretation. However, these recommendations have been variably implemented and the impact has not been widely assessed, both in clinical and research settings. OBJECTIVES: We evaluated the ERS/ATS airflow obstruction severity classification. METHODS: In the COPDGene Study (n = 10,108), airflow obstruction has been defined as a forced expiratory volume in one second to forced vital capacity (FEV1/FVC) ratio <0.70, with spirometry severity graded from class 1 to 4 based on race-specific percent predicted (pp) FEV1 cut-points as recommended by the Global Initiative for Chronic Obstructive Lung Disease (GOLD). We compared the GOLD approach, using NHANES III race-specific equations, to the application of GLI-Global equations using the ERS/ATS definition of airflow obstruction as FEV1/FVC ratio < lower limit of normal (LLN) and z-FEV1 cut-points of -1.645, -2.5, and -4 ("zGLI Global"). We tested the four-tier severity scheme for association with COPD outcomes. MEASUREMENTS AND MAIN RESULTS: The lowest agreement between ERS/ATS with zGLI Global and the GOLD classification was observed in individuals with milder disease (56.9% and 42.5% in GOLD 1 and 2) and race was a major determinant of redistribution. After adjustment for relevant covariates, zGLI Global distinguished all-cause mortality risk between normal spirometry and the first grade of COPD (Hazard Ratio 1.23, 95% CI 1.04-1.44, p=0.014), and showed a linear increase in exacerbation rates with increasing disease severity, in comparison to GOLD. CONCLUSIONS: The zGLI Global severity classification outperformed GOLD in the discrimination of survival, exacerbations, and imaging characteristics.

5.
medRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464285

RESUMO

Background: Studies have identified individual blood biomarkers associated with chronic obstructive pulmonary disease (COPD) and related phenotypes. However, complex diseases such as COPD typically involve changes in multiple molecules with interconnections that may not be captured when considering single molecular features. Methods: Leveraging proteomic data from 3,173 COPDGene Non-Hispanic White (NHW) and African American (AA) participants, we applied sparse multiple canonical correlation network analysis (SmCCNet) to 4,776 proteins assayed on the SomaScan v4.0 platform to derive sparse networks of proteins associated with current vs. former smoking status, airflow obstruction, and emphysema quantitated from high-resolution computed tomography scans. We then used NetSHy, a dimension reduction technique leveraging network topology, to produce summary scores of each proteomic network, referred to as NetSHy scores. We next performed genome-wide association study (GWAS) to identify variants associated with the NetSHy scores, or network quantitative trait loci (nQTLs). Finally, we evaluated the replicability of the networks in an independent cohort, SPIROMICS. Results: We identified networks of 13 to 104 proteins for each phenotype and exposure in NHW and AA, and the derived NetSHy scores significantly associated with the variable of interests. Networks included known (sRAGE, ALPP, MIP1) and novel molecules (CA10, CPB1, HIS3, PXDN) and interactions involved in COPD pathogenesis. We observed 7 nQTL loci associated with NetSHy scores, 4 of which remained after conditional analysis. Networks for smoking status and emphysema, but not airflow obstruction, demonstrated a high degree of replicability across race groups and cohorts. Conclusions: In this work, we apply state-of-the-art molecular network generation and summarization approaches to proteomic data from COPDGene participants to uncover protein networks associated with COPD phenotypes. We further identify genetic associations with networks. This work discovers protein networks containing known and novel proteins and protein interactions associated with clinically relevant COPD phenotypes across race groups and cohorts.

6.
medRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352364

RESUMO

Background-Research question: Chronic Obstructive Pulmonary Disease (COPD) is a leading cause of mortality. Predicting mortality risk in COPD patients can be important for disease management strategies. Although scores for all-cause mortality have been developed previously, there is limited research on factors that may directly affect COPD-specific mortality. Study design-Methods: used probabilistic (causal) graphs to analyze clinical baseline COPDGene data, including demographics, spirometry, quantitative chest imaging, and symptom features, as well as gene expression data (from year-5). Results: We identified factors linked to all-cause and COPD-specific mortality. Although many were similar, there were differences in certain comorbidities (all-cause mortality model only) and forced vital capacity (COPD-specific mortality model only). Using our results, we developed VAPORED , a 7-variable COPD-specific mortality risk score, which we validated using the ECLIPSE 3-yr mortality data. We showed that the new model is more accurate than the existing ADO, BODE, and updated BODE indices. Additionally, we identified biological signatures linked to all-cause mortality, including a plasma cell mediated component. Finally, we developed a web page to help clinicians calculate mortality risk using VAPORED, ADO, and BODE indices. Interpretation: Given the importance of predicting COPD-specific and all-cause mortality risk in COPD patients, we showed that probabilistic graphs can identify the features most directly affecting them, and be used to build new, more accurate models of mortality risk. Novel biological features affecting mortality were also identified. This is an important step towards improving our identification of high-risk patients and potential biological mechanisms that drive COPD mortality.

7.
medRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38260473

RESUMO

Chronic Obstructive Pulmonary Disease (COPD) is a complex, heterogeneous disease. Traditional subtyping methods generally focus on either the clinical manifestations or the molecular endotypes of the disease, resulting in classifications that do not fully capture the disease's complexity. Here, we bridge this gap by introducing a subtyping pipeline that integrates clinical and gene expression data with variational autoencoders. We apply this methodology to the COPDGene study, a large study of current and former smoking individuals with and without COPD. Our approach generates a set of vector embeddings, called Personalized Integrated Profiles (PIPs), that recapitulate the joint clinical and molecular state of the subjects in the study. Prediction experiments show that the PIPs have a predictive accuracy comparable to or better than other embedding approaches. Using trajectory learning approaches, we analyze the main trajectories of variation in the PIP space and identify five well-separated subtypes with distinct clinical phenotypes, expression signatures, and disease outcomes. Notably, these subtypes are more robust to data resampling compared to those identified using traditional clustering approaches. Overall, our findings provide new avenues to establish fine-grained associations between the clinical characteristics, molecular processes, and disease outcomes of COPD.

8.
Am J Respir Crit Care Med ; 209(3): 273-287, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37917913

RESUMO

Rationale: Emphysema is a chronic obstructive pulmonary disease phenotype with important prognostic implications. Identifying blood-based biomarkers of emphysema will facilitate early diagnosis and development of targeted therapies. Objectives: To discover blood omics biomarkers for chest computed tomography-quantified emphysema and develop predictive biomarker panels. Methods: Emphysema blood biomarker discovery was performed using differential gene expression, alternative splicing, and protein association analyses in a training sample of 2,370 COPDGene participants with available blood RNA sequencing, plasma proteomics, and clinical data. Internal validation was conducted in a COPDGene testing sample (n = 1,016), and external validation was done in the ECLIPSE study (n = 526). Because low body mass index (BMI) and emphysema often co-occur, we performed a mediation analysis to quantify the effect of BMI on gene and protein associations with emphysema. Elastic net models with bootstrapping were also developed in the training sample sequentially using clinical, blood cell proportions, RNA-sequencing, and proteomic biomarkers to predict quantitative emphysema. Model accuracy was assessed by the area under the receiver operating characteristic curves for subjects stratified into tertiles of emphysema severity. Measurements and Main Results: Totals of 3,829 genes, 942 isoforms, 260 exons, and 714 proteins were significantly associated with emphysema (false discovery rate, 5%) and yielded 11 biological pathways. Seventy-four percent of these genes and 62% of these proteins showed mediation by BMI. Our prediction models demonstrated reasonable predictive performance in both COPDGene and ECLIPSE. The highest-performing model used clinical, blood cell, and protein data (area under the receiver operating characteristic curve in COPDGene testing, 0.90; 95% confidence interval, 0.85-0.90). Conclusions: Blood transcriptome and proteome-wide analyses revealed key biological pathways of emphysema and enhanced the prediction of emphysema.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Transcriptoma , Proteômica , Enfisema Pulmonar/genética , Enfisema Pulmonar/complicações , Biomarcadores , Perfilação da Expressão Gênica
10.
Respir Res ; 24(1): 265, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925418

RESUMO

BACKGROUND: Quantitative interstitial abnormalities (QIA) are an automated computed tomography (CT) finding of early parenchymal lung disease, associated with worse lung function, reduced exercise capacity, increased respiratory symptoms, and death. The metabolomic perturbations associated with QIA are not well known. We sought to identify plasma metabolites associated with QIA in smokers. We also sought to identify shared and differentiating metabolomics features between QIA and emphysema, another smoking-related advanced radiographic abnormality. METHODS: In 928 former and current smokers in the Genetic Epidemiology of COPD cohort, we measured QIA and emphysema using an automated local density histogram method and generated metabolite profiles from plasma samples using liquid chromatography-mass spectrometry (Metabolon). We assessed the associations between metabolite levels and QIA using multivariable linear regression models adjusted for age, sex, body mass index, smoking status, pack-years, and inhaled corticosteroid use, at a Benjamini-Hochberg False Discovery Rate p-value of ≤ 0.05. Using multinomial regression models adjusted for these covariates, we assessed the associations between metabolite levels and the following CT phenotypes: QIA-predominant, emphysema-predominant, combined-predominant, and neither- predominant. Pathway enrichment analyses were performed using MetaboAnalyst. RESULTS: We found 85 metabolites significantly associated with QIA, with overrepresentation of the nicotinate and nicotinamide, histidine, starch and sucrose, pyrimidine, phosphatidylcholine, lysophospholipid, and sphingomyelin pathways. These included metabolites involved in inflammation and immune response, extracellular matrix remodeling, surfactant, and muscle cachexia. There were 75 metabolites significantly different between QIA-predominant and emphysema-predominant phenotypes, with overrepresentation of the phosphatidylethanolamine, nicotinate and nicotinamide, aminoacyl-tRNA, arginine, proline, alanine, aspartate, and glutamate pathways. CONCLUSIONS: Metabolomic correlates may lend insight to the biologic perturbations and pathways that underlie clinically meaningful quantitative CT measurements like QIA in smokers.


Assuntos
Enfisema , Niacina , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Fumantes , Pulmão , Enfisema Pulmonar/diagnóstico por imagem , Enfisema Pulmonar/epidemiologia , Niacinamida , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/epidemiologia
11.
NPJ Genom Med ; 8(1): 36, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37903807

RESUMO

The consequences of returning infectious pathogen test results identified incidentally in research studies have not been well-studied. Concerns include identification of an important health issue for individuals, accuracy of research test results, public health impact, potential emotional distress for participants, and need for IRB permissions. Blood RNA-sequencing analysis for non-human RNA in 3984 participants from the COPDGene study identified 228 participants with evidence suggestive for hepatitis C virus (HCV) infection. We hypothesized that incidentally discovered HCV results could be effectively returned to COPDGene participants with attention to the identified concerns. In conjunction with a COPDGene Participant Advisory Panel, we developed and obtained IRB approval for a process of returning HCV research results and an HCV Follow-Up Study questionnaire to capture information about previous HCV diagnosis and treatment information and participant reactions to return of HCV results. During phone calls following the initial HCV notification letter, 84 of 124 participants who could be contacted (67.7%) volunteered that they had been previously diagnosed with HCV infection. Thirty-one of these 124 COPDGene participants were enrolled in the HCV Follow-Up Study. Five of the 31 HCV Follow-Up Study participants did not report a previous diagnosis of HCV. For four of these participants, subsequent clinical HCV testing confirmed HCV infection. Thus, 30/31 Follow-Up Study participants had confirmed HCV diagnoses, supporting the accuracy of the HCV research test results. However, the limited number of participants in the Follow-Up Study precludes an accurate assessment of the false-positive and false-negative rates of the research RNA sequencing evidence for HCV. Most HCV Follow-Up Study participants (29/31) were supportive of returning HCV research results, and most participants found the process for returning HCV results to be informative and not upsetting. Newly diagnosed participants were more likely to be pleased to learn about a potentially curable infection (p = 0.027) and showed a trend toward being more frightened by the potential health risks of HCV (p = 0.11). We conclude that HCV results identified incidentally during transcriptomic research studies can be successfully returned to research study participants with a carefully designed process.

12.
Am J Respir Crit Care Med ; 208(11): 1196-1205, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788444

RESUMO

Rationale: Constantly exposed to the external environment and mutagens such as tobacco smoke, human lungs have one of the highest somatic mutation rates among all human organs. However, the relationship of these mutations to lung disease and function is not known. Objectives: To identify the prevalence and significance of clonal somatic mutations in chronic lung diseases. Methods: We analyzed the clonal somatic mutations from 1,251 samples of normal and diseased noncancerous lung tissue RNA sequencing with paired whole-genome sequencing from the Lung Tissue Research Consortium. We examined the associations of somatic mutations with lung function, disease status, and computationally deconvoluted cell types in two of the most common diseases represented in our dataset, chronic obstructive pulmonary disease (COPD; 29%) and idiopathic pulmonary fibrosis (IPF; 13%). Measurements and Main Results: Clonal somatic mutational burden was associated with reduced lung function in both COPD and IPF. We identified an increased prevalence of clonal somatic mutations in individuals with IPF compared with normal control subjects and individuals with COPD independent of age and smoking status. IPF clonal somatic mutations were enriched in disease-related and airway epithelial-expressed genes such as MUC5B in IPF. Patients who were MUC5B risk variant carriers had increased odds of developing somatic mutations of MUC5B that were explained by increased expression of MUC5B. Conclusions: Our identification of an increased prevalence of clonal somatic mutation in diseased lung that correlates with airway epithelial gene expression and disease severity highlights for the first time the role of somatic mutational processes in lung disease genetics.


Assuntos
Fibrose Pulmonar Idiopática , Doença Pulmonar Obstrutiva Crônica , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Mutação/genética , Fenômenos Fisiológicos Respiratórios , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo
13.
Am J Respir Crit Care Med ; 208(11): 1177-1195, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37756440

RESUMO

Rationale: Despite the importance of inflammation in chronic obstructive pulmonary disease (COPD), the immune cell landscape in the lung tissue of patients with mild-moderate disease has not been well characterized at the single-cell and molecular level. Objectives: To define the immune cell landscape in lung tissue from patients with mild-moderate COPD at single-cell resolution. Methods: We performed single-cell transcriptomic, proteomic, and T-cell receptor repertoire analyses on lung tissue from patients with mild-moderate COPD (n = 5, Global Initiative for Chronic Obstructive Lung Disease I or II), emphysema without airflow obstruction (n = 5), end-stage COPD (n = 2), control (n = 6), or donors (n = 4). We validated in an independent patient cohort (N = 929) and integrated with the Hhip+/- murine model of COPD. Measurements and Main Results: Mild-moderate COPD lungs have increased abundance of two CD8+ T cell subpopulations: cytotoxic KLRG1+TIGIT+CX3CR1+ TEMRA (T effector memory CD45RA+) cells, and DNAM-1+CCR5+ T resident memory (TRM) cells. These CD8+ T cells interact with myeloid and alveolar type II cells via IFNG and have hyperexpanded T-cell receptor clonotypes. In an independent cohort, the CD8+KLRG1+ TEMRA cells are increased in mild-moderate COPD lung compared with control or end-stage COPD lung. Human CD8+KLRG1+ TEMRA cells are similar to CD8+ T cells driving inflammation in an aging-related murine model of COPD. Conclusions: CD8+ TEMRA cells are increased in mild-moderate COPD lung and may contribute to inflammation that precedes severe disease. Further study of these CD8+ T cells may have therapeutic implications for preventing severe COPD.


Assuntos
Linfócitos T CD8-Positivos , Doença Pulmonar Obstrutiva Crônica , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Proteômica , Pulmão/metabolismo , Inflamação , Receptores de Antígenos de Linfócitos T
14.
J Allergy Clin Immunol ; 152(6): 1423-1432, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37595761

RESUMO

BACKGROUND: Asthma and chronic obstructive pulmonary disease (COPD) have distinct and overlapping genetic and clinical features. OBJECTIVE: We sought to test the hypothesis that polygenic risk scores (PRSs) for asthma (PRSAsthma) and spirometry (FEV1 and FEV1/forced vital capacity; PRSspiro) would demonstrate differential associations with asthma, COPD, and asthma-COPD overlap (ACO). METHODS: We developed and tested 2 asthma PRSs and applied the higher performing PRSAsthma and a previously published PRSspiro to research (Genetic Epidemiology of COPD study and Childhood Asthma Management Program, with spirometry) and electronic health record-based (Mass General Brigham Biobank and Genetic Epidemiology Research on Adult Health and Aging [GERA]) studies. We assessed the association of PRSs with COPD and asthma using modified random-effects and binary-effects meta-analyses, and ACO and asthma exacerbations in specific cohorts. Models were adjusted for confounders and genetic ancestry. RESULTS: In meta-analyses of 102,477 participants, the PRSAsthma (odds ratio [OR] per SD, 1.16 [95% CI, 1.14-1.19]) and PRSspiro (OR per SD, 1.19 [95% CI, 1.17-1.22]) both predicted asthma, whereas the PRSspiro predicted COPD (OR per SD, 1.25 [95% CI, 1.21-1.30]). However, results differed by cohort. The PRSspiro was not associated with COPD in GERA and Mass General Brigham Biobank. In the Genetic Epidemiology of COPD study, the PRSAsthma (OR per SD: Whites, 1.3; African Americans, 1.2) and PRSspiro (OR per SD: Whites, 2.2; African Americans, 1.6) were both associated with ACO. In GERA, the PRSAsthma was associated with asthma exacerbations (OR, 1.18) in Whites; the PRSspiro was associated with asthma exacerbations in White, LatinX, and East Asian participants. CONCLUSIONS: PRSs for asthma and spirometry are both associated with ACO and asthma exacerbations. Genetic prediction performance differs in research versus electronic health record-based cohorts.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Adulto , Humanos , Criança , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Asma/epidemiologia , Asma/genética , Capacidade Vital , Testes de Função Respiratória , Volume Expiratório Forçado
15.
Sci Rep ; 13(1): 12952, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563237

RESUMO

Expression quantitative trait methylation (eQTM) analysis identifies DNA CpG sites at which methylation is associated with gene expression. The present study describes an eQTM resource of CpG-transcript pairs derived from whole blood DNA methylation and RNA sequencing gene expression data in 2115 Framingham Heart Study participants. We identified 70,047 significant cis CpG-transcript pairs at p < 1E-7 where the top most significant eGenes (i.e., gene transcripts associated with a CpG) were enriched in biological pathways related to cell signaling, and for 1208 clinical traits (enrichment false discovery rate [FDR] ≤ 0.05). We also identified 246,667 significant trans CpG-transcript pairs at p < 1E-14 where the top most significant eGenes were enriched in biological pathways related to activation of the immune response, and for 1191 clinical traits (enrichment FDR ≤ 0.05). Independent and external replication of the top 1000 significant cis and trans CpG-transcript pairs was completed in the Women's Health Initiative and Jackson Heart Study cohorts. Using significant cis CpG-transcript pairs, we identified significant mediation of the association between CpG sites and cardiometabolic traits through gene expression and identified shared genetic regulation between CpGs and transcripts associated with cardiometabolic traits. In conclusion, we developed a robust and powerful resource of whole blood eQTM CpG-transcript pairs that can help inform future functional studies that seek to understand the molecular basis of disease.


Assuntos
Doenças Cardiovasculares , Metilação de DNA , Humanos , Feminino , Locos de Características Quantitativas , Regulação da Expressão Gênica , Estudos Longitudinais , Doenças Cardiovasculares/genética , Ilhas de CpG/genética , Estudo de Associação Genômica Ampla
16.
Chronic Obstr Pulm Dis ; 10(4): 355-368, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37413999

RESUMO

Rationale: Chronic obstructive pulmonary disease (COPD) is characterized by pathologic changes in the airways, lung parenchyma, and persistent inflammation, but the links between lung structural changes and blood transcriptome patterns have not been fully described. Objections: The objective of this study was to identify novel relationships between lung structural changes measured by chest computed tomography (CT) and blood transcriptome patterns measured by blood RNA sequencing (RNA-seq). Methods: CT scan images and blood RNA-seq gene expression from 1223 participants in the COPD Genetic Epidemiology (COPDGene®) study were jointly analyzed using deep learning to identify shared aspects of inflammation and lung structural changes that we labeled image-expression axes (IEAs). We related IEAs to COPD-related measurements and prospective health outcomes through regression and Cox proportional hazards models and tested them for biological pathway enrichment. Results: We identified 2 distinct IEAs: IEAemph which captures an emphysema-predominant process with a strong positive correlation to CT emphysema and a negative correlation to forced expiratory volume in 1 second and body mass index (BMI); and IEAairway which captures an airway-predominant process with a positive correlation to BMI and airway wall thickness and a negative correlation to emphysema. Pathway enrichment analysis identified 29 and 13 pathways significantly associated with IEAemph and IEAairway, respectively (adjusted p<0.001). Conclusions: Integration of CT scans and blood RNA-seq data identified 2 IEAs that capture distinct inflammatory processes associated with emphysema and airway-predominant COPD.

17.
Am J Respir Crit Care Med ; 208(3): 247-255, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37286295

RESUMO

Rationale: Acute exacerbations of chronic obstructive pulmonary disease (AE-COPDs) are associated with a significant disease burden. Blood immune phenotyping may improve our understanding of a COPD endotype at increased risk of exacerbations. Objective: To determine the relationship between the transcriptome of circulating leukocytes and COPD exacerbations. Methods: Blood RNA sequencing data (n = 3,618) from the COPDGene (Genetic Epidemiology of COPD) study were analyzed. Blood microarray data (n = 646) from the ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) study were used for validation. We tested the association between blood gene expression and AE-COPDs. We imputed the abundance of leukocyte subtypes and tested their association with prospective AE-COPDs. Flow cytometry was performed on blood in SPIROMICS (Subpopulations and Intermediate Outcomes in COPD Study) (n = 127), and activation markers for T cells were tested for association with prospective AE-COPDs. Measurements and Main Results: Exacerbations were reported 4,030 and 2,368 times during follow-up in COPDGene (5.3 ± 1.7 yr) and ECLIPSE (3 yr), respectively. We identified 890, 675, and 3,217 genes associated with a history of AE-COPDs, persistent exacerbations (at least one exacerbation per year), and prospective exacerbation rate, respectively. In COPDGene, the number of prospective exacerbations in patients with COPD (Global Initiative for Chronic Obstructive Lung Disease stage ⩾2) was negatively associated with circulating CD8+ T cells, CD4+ T cells, and resting natural killer cells. The negative association with naive CD4+ T cells was replicated in ECLIPSE. In the flow-cytometry study, an increase in CTLA4 on CD4+ T cells was positively associated with AE-COPDs. Conclusions: Individuals with COPD with lower circulating lymphocyte counts, particularly decreased CD4+ T cells, are more susceptible to AE-COPDs, including persistent exacerbations.


Assuntos
Linfócitos T CD8-Positivos , Doença Pulmonar Obstrutiva Crônica , Humanos , Estudos Prospectivos , Progressão da Doença , Doença Pulmonar Obstrutiva Crônica/complicações , Transcriptoma
18.
Genetics ; 224(4)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37348055

RESUMO

Exonic variants present some of the strongest links between genotype and phenotype. However, these variants can have significant inter-individual pathogenicity differences, known as variable penetrance. In this study, we propose a model where genetically controlled mRNA splicing modulates the pathogenicity of exonic variants. By first cataloging exonic inclusion from RNA-sequencing data in GTEx V8, we find that pathogenic alleles are depleted on highly included exons. Using a large-scale phased whole genome sequencing data from the TOPMed consortium, we observe that this effect may be driven by common splice-regulatory genetic variants, and that natural selection acts on haplotype configurations that reduce the transcript inclusion of putatively pathogenic variants, especially when limiting to haploinsufficient genes. Finally, we test if this effect may be relevant for autism risk using families from the Simons Simplex Collection, but find that splicing of pathogenic alleles has a penetrance reducing effect here as well. Overall, our results indicate that common splice-regulatory variants may play a role in reducing the damaging effects of rare exonic variants.


Assuntos
Sítios de Splice de RNA , Splicing de RNA , Penetrância , Éxons , Genótipo , RNA Mensageiro/genética , Processamento Alternativo
19.
Am J Respir Crit Care Med ; 208(4): 451-460, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37159910

RESUMO

Rationale: Cigarette smoking contributes to the risk of death through different mechanisms. Objectives: To determine how causes of and clinical features associated with death vary in tobacco cigarette users by lung function impairment. Methods: We stratified current and former tobacco cigarette users enrolled in Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) into normal spirometry, PRISm (Preserved Ratio Impaired Spirometry), Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1-2 COPD, and GOLD 3-4 COPD. Deaths were identified via longitudinal follow-up and Social Security Death Index search. Causes of death were adjudicated after a review of death certificates, medical records, and next-of-kin interviews. We tested associations between baseline clinical variables and all-cause mortality using multivariable Cox proportional hazards models. Measurements and Main Results: Over a 10.1-year median follow-up, 2,200 deaths occurred among 10,132 participants (age 59.5 ± 9.0 yr; 46.6% women). Death from cardiovascular disease was most frequent in PRISm (31% of deaths). Lung cancer deaths were most frequent in GOLD 1-2 (18% of deaths vs. 9-11% in other groups). Respiratory deaths outpaced competing causes of death in GOLD 3-4, particularly when BODE index ⩾7. St. George's Respiratory Questionnaire score ⩾25 was associated with higher mortality in all groups: Hazard ratio (HR), 1.48 (1.20-1.84) normal spirometry; HR, 1.40 (1.05-1.87) PRISm; HR, 1.80 (1.49-2.17) GOLD 1-2; HR, 1.65 (1.26-2.17) GOLD 3-4. History of respiratory exacerbations was associated with higher mortality in GOLD 1-2 and GOLD 3-4, quantitative emphysema in GOLD 1-2, and airway wall thickness in PRISm and GOLD 3-4. Conclusions: Leading causes of death vary by lung function impairment in tobacco cigarette users. Worse respiratory-related quality of life is associated with all-cause mortality regardless of lung function.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Produtos do Tabaco , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Volume Expiratório Forçado , Pulmão , Qualidade de Vida , Espirometria
20.
Am J Epidemiol ; 192(10): 1647-1658, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37160347

RESUMO

While variation in emphysema severity between patients with chronic obstructive pulmonary disease (COPD) is well-recognized, clinically applicable definitions of the emphysema-predominant disease (EPD) and non-emphysema-predominant disease (NEPD) subtypes have not been established. To study the clinical relevance of the EPD and NEPD subtypes, we tested the association of these subtypes with prospective decline in forced expiratory volume in 1 second (FEV1) and mortality among 3,427 subjects with Global Initiative for Chronic Obstructive Lung Disease (GOLD) spirometric grade 2-4 COPD at baseline in the Genetic Epidemiology of COPD (COPDGene) Study, an ongoing national multicenter study that started in 2007. NEPD was defined as airflow obstruction with less than 5% computed tomography (CT) quantitative densitometric emphysema at -950 Hounsfield units, and EPD was defined as airflow obstruction with 10% or greater CT emphysema. Mixed-effects models for FEV1 demonstrated larger average annual FEV1 loss in EPD subjects than in NEPD subjects (-10.2 mL/year; P < 0.001), and subtype-specific associations with FEV1 decline were identified. Cox proportional hazards models showed higher risk of mortality among EPD patients versus NEPD patients (hazard ratio = 1.46, 95% confidence interval: 1.34, 1.60; P < 0.001). To determine whether the NEPD/EPD dichotomy is captured by previously described COPDGene subtypes, we used logistic regression and receiver operating characteristic (ROC) curve analysis to predict NEPD/EPD membership using these previous subtype definitions. The analysis generally showed excellent discrimination, with areas under the ROC curve greater than 0.9. The NEPD and EPD COPD subtypes capture important aspects of COPD heterogeneity and are associated with different rates of disease progression and mortality.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Enfisema Pulmonar/diagnóstico por imagem , Enfisema Pulmonar/complicações , Enfisema Pulmonar/epidemiologia , Pulmão , Volume Expiratório Forçado , Enfisema/complicações , Progressão da Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...